災害の軽減に貢献するための地震火山観測研究計画(第2次)
令和2年度(2020年度)成果論文等一覧

 

成果報告システムでご報告いただいた成果論文等をリストにしています。

(誤記等あれば,予知協企画部までご連絡ください。)

  1. Abdallah, S., M. Utsugi, K. Aizawa, M. Uyeshima, W. Kanda, T. Koyama, and T. Shiotani, 2020, Three-dimensional electrical resistivity structure of the Kuju volcanic group, Central Kyushu, Japan revealed by magnetotelluric survey data, J. Volcanol. Geothermal. Res., 400, 106898, doi:10.1016/j.jvolgeores.2020.106898
  2. Agata, R., A. Kasahara and Y. Yagi, 2021, A Bayesian inference framework for fault slip distributions based on ensemble modeling of the uncertainty of underground structure - With a focus on uncertain fault dip, Geophys. J. Int., 225, 1392-1411, doi:10.1093/gji/ggab033
  3. Aizawa, K., S. Takakura, H. Asaue, K. Koike, R. Yoshimura, K. Yamazaki, S. Komatsu, M. Utsugi, H. Inoue, K. Tsukamoto, M. Uyeshima, T. Koyama, W. Kanda, T. Yoshinaga, N. Matsushima, K. Uchida, Y. Tsukashima, T. Matsushima, H. Ichihara, D. Muramatsu, Y. Teguri, A. Shito, S. Matsumoto and H. Shimizu, 2021, Electrical conductive fluid-rich zones and their influence on the earthquake initiation, growth, and arrest processes: observations from the 2016 Kumamoto earthquake sequence, Kyushu Island, Japan, Earth Planet. Space, 73, 12, doi:10.1186/s40623-020-01340-w
  4. Aoi, S., Y. Asano, T. Kunugi, T. Kimura, K. Uehira, N. Takahashi, H. Ueda, K. Shiomi, T. Matsumoto, and H. Fujiwara, 2020, MOWLAS: NIED observation network for earthquake, tsunami and volcano, Earth Planet. Space, 72, 126, doi:10.1186/s40623-020-01250-x
  5. Arai, R., S. Kodaira, S. Henrys, N. Bangs, K. Obana, G. Fujie, S. Miura, D. Barker, D. Basset2, R. Bell, K. Mochizuki, R. Kellett, V. Stucker, B. Fry and NZ3D Team, 2020, Three-dimensional P-wave velocity structure of the northern Hikurangi margin from the NZ3D experiment: Evidence for fault-bound anisotropy, J. Geophys. Res.: Solid Earth, 125(12), e2020JB020433, doi:10.1029/2020JB020433
  6. Araya, A., K. Kasai, M. Yoshida, M Nakazawa and T. Tsubokawa, 2020, Evaluation of systematic errors in the compact absolute gravimeter TAG-1 for network monitoring of volcanic activities, International Association of Geodesy Symposia, Springer, Berlin-Heidelberg, doi:10.1007/1345_2020_107
  7. Ariyoshi K., T. Iinuma, M. Nakano, T. Kimura, E. Araki, Y. Machida, K. Sueki, S. Yada, T. Nishiyama, K. Suzuki, T. Hori, N. Takahashi, and S. Kodaira, 2021, Characteristics of slow slip event in March 2020 revealed from borehole and DONET observatories, Front. Earth Sci., 8, 600793, doi:10.3389/feart.2020.600793
  8. Assah, A.N.E., T. Yokoyama, F.T. Aka, H. Iwamori, T. Kuritani, T. Usui, M.G. Dedzo, J. Tamen, T. Hasegawa, E.M. Fozing, M.J. Wirmvem, and A.L. Nche,2020, Major/trace elements and Sr-Nd-Pb isotope systematics of lavas from lakes Barombi Mbo and Barombi Koto in the Kumba graben, Cameroon volcanic line: Constraints on petrogenesis, J. African Earth Sci., 161, 103675, doi:10.1016/j.jafrearsci.2019.103675
  9. Baba, S., A. Takeo, K. Obara, T. Matsuzawa, and T. Maeda, 2020, Comprehensive detection of very low frequency earthquakes off the Hokkaido and Tohoku Pacific coasts, northeastern Japan, J. Geophys. Res.: Solid Earth, 125(1), e2019JB017988, doi:10.1029/2019JB017988
  10. Baba, S., S. Takemura, K. Obara, and A. Noda, 2020, Slow earthquakes illuminating interplate coupling heterogeneities in subduction zones, Geophys. Res. Lett., 47(14), e2020GL088089, doi:10.1029/2020GL088089
  11. Bernard, B., S. Takarada, S.D. Andrade, and A. Dufresne, 2020, Terminology and strategy to describe large volcanic landslides and debris avalanches, in Volcanic debris avalanches -from collapse to hazards-, eds. Matteo, R., Dufresne, A. and Procter, J., (Springer), 51-73, doi:10.1007/978-3-030-57411-6_3
  12. Brown, J. R., R. N. Taylor, and M. Iguchi, 2020, Using high-resolution Pb isotopes to unravel the petrogenesis of Sakurajima volcano, Japan, Bull. Volcanol., 82, 36, doi:10.1007/s00445-020-1371-0
  13. Buckby, J., T. Wang, J. Zhuang, and K. Obara, 2020, Model checking for hidden Markov models, J. Comput. Graph. Stat., 29(4), 859-874, doi:10.1080/10618600.2020.1743295
  14. Cahyadi, M.N., R. W. Rahayu, K. Heki, and Y. Nakashima, 2020, Harmonic ionospheric oscillation by the 2010 eruption of the Merapi volcano, Indonesia, and the relevance of its amplitude to the mass eruption rate, J. Volcanol. Geotherm. Res., 405, 107047, doi:10.1016/j.jvolgeores.2020.107047
  15. Chang, J.-H., J.-O. Park, T.-T. Chen, A. Yamaguchi, T. Tsuru, Y. Sano, H.-H. Hsu, K. Shirai, T. Kagoshima, K. Tanaka, and C. Tamura, 2020, Structural-morphological and sedimentary features of forearc slope off Miyagi, NE Japan: implications for development of forearc basins and plumbing systems, Geo-Mar. Lett., 40, 309-324, doi:10.1007/s00367-020-00636-w
  16. Chen, H., R. Wang, M. Miao, X. Liu, Y. Ma, K. Hattori, and P. Han, 2020, A statistical study of the correlation between geomagnetic storms and M >= 7.0 global earthquakes during 1957-2020, Entropy, 22(11), 1270, doi:10.3390/e22111270
  17. Cho, I., and T. Iwata, 2021, Limits and benefits of the spatial autocorrelation microtremor array method due to the incoherent noise, with special reference to the analysis of long wavelength ranges, J. Geophys. Res.: Solid Earth, 126(2), 2020JB019850, doi:10.1029/2020JB019850
  18. Conway, C.E., K.J. Chamberlain, Y. Harigane, D.J. Morgan, and C.J.N. Wilson, 2020, Rapid assembly of high-Mg andesites and dacites by magma mixing at a continental arc stratovolcano, Geology, 48(10), 1033-1037, doi:10.1130/G47614.1
  19. Doi, I., S. Matsuura, H. Osawa, T. Shibasaki, and S. Tosa, 2020, Effects of Coastal Erosion on Landslide Activity Revealed by Multi-sensor Observations, Earth Surf. Process. Landf., 45, 10, 2291-2299, doi:10.1002/esp.4880
  20. Enomoto, Y., K. Heki, T. Yamabe, S. Sugiura, and H. Kondo, 2020, A possible causal mechanism of geomagnetic variations as observed immediately before and after the 2011 Tohoku-oki earthquake, Open J. Earthq. Res., 9, 33-49, doi:10.4236/ojer.2020.92003
  21. Fujita, R., K. Goto, Y. Iryu, and T. Abe, 2020, Millennial paleotsunami history at Minna Island, southern Ryukyu Islands, Japan, Prog. Earth Planet. Sci., 7, 53, doi:10.1186/s40645-020-00365-9
  22. Fukahata, Y., A. Meneses-Gutierrez, and T. Sagiya, 2020, Detection of plastic strain using GNSS data of pre- and post-seismic deformation of the 2011 Tohoku-oki Earthquake, Earth Planet. Space, 72, 18, doi:10.1186/s40623-020-1144-1
  23. Fukahata, Y., K. Oohashi, Y. Takada, and A. Tanaka, 2020, Overview of the special issue Crustal dynamics (Part II): Toward the integration of geology and Geophysics, 地学雑誌, 129(4), 443-445, doi:10.5026/jgeography.129.443
  24. Furumura, T., and T. Maeda, 2020, High-resolution source imaging based on time-reversal wave propagation simu--lations using assimilated dense seismic records, Geophys. J. Int., 225, 1, 140-157, doi:10.1093/gji/ggaa586
  25. Gehl, P., S. Matsushima, and S. Masuda, 2020, Investigation of damage to the water network of Uki City from the 2016 Kumamoto earthquake: derivation of damage functions and construction of infrastructure loss scenarios, Bull. Earthquake Eng., 19, 685-711, doi:10.1007/s10518-020-01001-z
  26. Genzano, N., C. Filizzola, K. Hattori, N. Pergola, and V. Tramutoli, 2021, Statistical correlation analysis between thermal infrared anomalies observed from MTSATs and large earthquakes occurred in Japan (2005-2015), J. Geophys. Res.: Solid Earth, 126(2), e2020JB020108, doi:10.1029/2020JB020108
  27. Gocho, M., S. Kojima, and H. Yamada,2020, Limitation of parallel assumption in repeat-pass InSAR using nonparallel orbits,IEICE Communications Express (ComEX), X9-B, 12, 586-592, doi:10.1587/comex.2020COL0013
  28. Goda, K., T. Yasuda, N. Mori, A. Muhammad, R. De Risi, and F. De Luca, 2020, Uncertainty quantification of tsunami inundation in Kuroshio, Kochi Prefecture, Japan, using the Nankai-Tonankai megathrust rupture scenarios, Nat. Hazards Earth Sys. Sci., 20, 3039-3056, doi:10.5194/nhess-20-3039-2020
  29. Goltz, J., G. Nakano, H. Park, and K. Yamori, 2020, Earthquake ground motion and human behavior: using DYFI data to assess behavioral response to earthquakes, Earthquake Spectra, 36(3), 1231-1253, doi:10.1177/8755293019899958
  30. Gou, T., D. Zhao, Z. Huang, and L. Wang, 2020, Structural heterogeneity in source zones of the 2018 Anchorage intraslab earthquake and the 1964 Alaska megathrust earthquake, Geochem. Geophys. Geosyst., 21(3), e2019GC008812, doi:10.1029/2019GC008812
  31. Graham, K.M., M.K. Savage, R. Arnold, H.J. Zal, T. Okada, Y. Iio, and S. Matsumoto, 2020, Spatio-temporal analysis of seismic anisotropy associated with the Cook Strait and Kaikoura earthquake sequences in New Zealand, Geophys. J. Int., 223(3), 1987-2008, doi:10.1093/gji/ggaa433
  32. Hamada, M., H. Iwamori, P.A. Brandl, T. Ushikubo, K. Shimizu, M. Ito, H. Li, and I.P. Savov, 2020, Temporal evolution of proto-Izu-Bonin-Mariana arc volcanism over 10 Ma: Constraints from statistical analysis of melt inclusion compositions, J. Petrol., 61(1), egaa022, doi:10.1093/petrology/egaa022
  33. Han, P., J. Zhuang, K. Hattori, C.-H. Chen, F. Febriani, H. Chen, C. Yoshino, and S. Yoshida, 2020, Assessing the potential earthquake precursory information in ULF magnetic data recorded in Kanto, Japan during 2000-2010: distance and magnitude dependences, Entropy, 22(8), 859, doi:10.3390/e22080859
  34. Hashima, A., H. Sato, and T. Sato, 2020, Stress loading and the occurrence of normal type earthquakes under Boso Peninsula, Japan, Earth Planet. Space, 72, 79, doi:10.1186/s40623-020-01201-6
  35. Hashimoto, T.M., K. Aizawa, Y. Hayashida, Y. Yuasa, T. Matsushima, Y. Yamamoto, K. Tsukamoto, K. Miyano, S. Matsumoto, and H. Shimizu, 2020, Joint seismological-magnetotelluric investigation of shallow and implosive non-DC and DC earthquakes beneath the gravitationally unstable Heisei-Shinzan Lava Dome, Unzen Volcano, Japan, J. Volcanol. Geotherm. Res., 406, 107066, doi:10.1016/j.jvolgeores.2020.107066
  36. Heki, K., 2020, Chapter 5-3: Ionospheric disturbances related to earthquakes in Advances in ionospheric research: Current understanding and challenges, Wiley/AGU Book Space Physics and Aeronomy, Volume 3, edited by C. Huang and G. Lu, pp.320, ISBN:978-1-119-50755-0
  37. Henrys, S, D. Eberhart-Phillips, D. Bassett, R. Sutherland, D. Okaya, M. Savage, D. Evanzia, T. Stern, H. Sato, K. Mochizuki, T. Iwasaki, E. Kurashimo, A. Sewarc, and A. Wech, 2020, Upper plate heterogeneity along the southern Hikurangi margin, New Zealand, Geophys. Res. Lett., 47(4), e2019GL085511, doi:10.1029/2019GL085511
  38. Hirauchi, K., I. Katayama, and Y. Kouketsu, 2020, Semi-brittle deformation of antigorite serpentinite under forearc mantle wedge conditions, J. Struct. Geol., 140, 104151, doi:10.1016/j.jsg.2020.104151
  39. Hirauchi, K., Y. Yoshida, Y. Yabe, and J. Muto, 2020, Slow stick-slip failure in halite gouge caused by brittle-plastic fault heterogeneity, Geochem., Geophys., Geosyst., 21(9), e2020GC009165, doi:10.1029/2020GC009165
  40. Hirose, H., and T. Kimura, 2020, Slip distributions of short-term slow slip events in Shikoku, southwest Japan from 2001 to 2019 based on tilt change measurements, J. Geophys. Res.: Solid Earth, 125(6), e2020JB019601, doi:10.1029/2020JB019601
  41. Hisakawa, T., R. Ando, T. E. Yano, and M. Matsubara, 2020, Dynamic rupture simulation of 2018, Hokkaido Eastern Iburi earthquake: Role of non-planar geometry, Earth Planet. Space, 72, 36, doi:10.1186/s40623-020-01160-y
  42. Honsho, C., M. Kido, T. Ichikawa, T. Ohashi, T. Kawakami, and H. Fujimoto, 2021, Application of phase-only correlation to travel-time determination in GNSS-Acoustic positioning, Front. Earth Sci., 9, 600732, doi:10.3389/feart.2021.600732
  43. Hori, T., R. Agata, T. Ichimura, K. Fujita, T. Yamaguchi, and T. Iinuma, 2021, High fidelity elastic Green's functions for subduction zone models consistent with the global standard geodetic reference system, Earth Planet. Space, 73, 41, doi:10.1186/s40623-021-01370-y
  44. Hoshiba, M., 2020, Too-late warnings by estimating Mw: Earthquake early warning in the near-fault region, Bull. Seism. Soc. Am., 110(3), 1276-1288, doi:10.1785/0120190306
  45. Hotta, K. and M. Iguchi, 2021, Tilt and strain change during the explosion at Minami-dake, Sakurajima, on November 13, 2017, Earth Planet. Space 73, 70, doi:10.1186/s40623-021-01392-6
  46. Hsiung, K-H., T. Kanamatsu, K. Ikehara, K. Usami, C-H. Horng, N. Ohkouchi, N-O. Ogawa, S. Saito, and M. Murayama, 2021, X-ray fluorescence core scanning, magnetic signatures, and organic geochemistry analyses of Ryukyu Trench sediments: turbidites and hemipelagites., Prog. Earth Planet. Sci., 8, 2, doi:10.1186/s40645-020-00396-2
  47. Hua, Y., D. Zhao, G. Toyokuni, and Y. Xu, 2020, Tomography of the source zone of the great 2011 Tohoku earthquake, Nat. Commun., 11, 1163, doi:10.1038/s41467-020-14745-8
  48. Huang, Q., P. Han, K. Hattori, and H. Ren, 2020, Electromagnetic signals associated with earthquakes: A review of observations, data processing, and mechanisms in China, seismoelectric exploration: Theory, Experiments, and Applications, edited by Grobbe, N., Revil, A., Zhu, Z., Slob, E, Wiley, 415-436, doi:10.1002/9781119127383.ch26
  49. Huang, Y., T. Nakatani, M. Nakamura, and C. McCammon, 2020, Experimental constraint on grain-scale fluid connectivity in subduction zones, Earth Planet. Sci. Lett., 552, 116610, doi:10.1016/j.epsl.2020.116610
  50. Hutchinson, J., H. Kao, M. Riedel, K. Obana, K. Wang, S. Kodaira, T. Takahashi, and Y. Yamamoto, 2020, Significant geometric variation of the subducted plate beneath the northernmost Cascadia subduction zone and its tectonic implications as revealed by the 2014 Mw 6.4 earthquake sequence, Earth Planet. Sci. Lett., 551, 116569, doi:10.1016/j.epsl.2020.116569
  51. Ichiyanagi, M., V. Mikhaylov, D. Kostylev, Y. Levin, and H. Takahashi, 2020, Evaluation for hypocenter esti-mation error in the southwestern Kuril trench using Japan and Russia joint seismic data, Earth Planet. Space, 72, 86, doi:10.1186/s40623-020-01215-0
  52. Igarashi, T., 2020, Catalog of small repeating earthquakes for the Japanese Islands, Earth Planet. Space, 72, 73, doi:10.1186/s40623-020-01205-2
  53. Iguchi, M., 2020, Chapter 3 Resilience to Volcano- and Landslide-Related Hazards, in “Disaster Risk Reduction and Resilience”, ed. by M. Yokomatsu and S. Hochrainer-Stigler, Disaster and Risk Research: GADRI Book Series, Springer, 25-44, doi:10.1007/978-981-15-4320-3_3
  54. Iguchi, M., 2021, Chapter 18 Volcano emergency planning at Sakurajima volcano, in “Forecasting and Planning for Volcanic Hazards, Risks, and Disasters Volume 2”, ed. by P. Papale, Hazards and Disasters Series, Elsevier, 635-668, doi:10.1016/B978-0-12-818082-2.00018-4
  55. Iguchi, M., H. Nakamichi, and T. Tameguri, 2020, Integrated study on forecasting volcanic hazards of Sakurajima volcano, Japan, J. Disaster Res., 15, 174-186, doi:10.20965/jdr.2020.p0174
  56. Iio, Y., S. Matsumoto, Y. Yamashita, S. Sakai, K. Tomisaka, M. Sawada, T. Iidaka, T. Iwasaki, M. Kamizono, H. Katao, A. Kato, E. Kurashimo, Y. Teguri, H. Tsuda, and T. Ueno, 2020, Stationarity of aftershock activities of the 2016 Central Tottori Prefecture earthquake revealed by dense seismic observation, Earth Planet. Space, 72, 42, doi:10.1186/s40623-020-01161-x
  57. Imanishi, K., M. Ohtani, and T. Uchide, 2020, Driving stress and seismotectonic implications of the 2013 Mw5.8 Awaji Island earthquake, southwestern Japan, based on earthquake focal mechanisms before and after the mainshock, Earth Planet. Space, 72, 158, doi:10.1186/s40623-020-01292-1
  58. Ishii, K., A. Yokoo, M. Iguchi, and E. Fujita, 2020, Utilizing the solution of sound diffraction by a thin screen to evaluate infrasound waves attenuated around volcano topography, J. Volcanol. Geotherm. Res., 402, 106983, doi:10.1016/j.jvolgeores.2020.106983
  59. Ito, E., C. Cornou, F. Nagashima, and H. Kawase, 2021, Estimation of velocity structures in the Grenoble Basin using pseudo earthquake horizontal-to-vertical spectral ratio from microtremors, Bull. Seismol. Soc. Am., 111(2), 627-653, doi:10.1785/0120200211
  60. Iwamori, H., H. Nakamura, Q. Chang, N. Morikawa, and S. Haraguchi, 2020, Multivariate statistical analyses of rare earth element compositions of spring waters from the Arima and Kii areas, Southwest Japan, Geochem. J., 54(4), 165-182, doi:10.2343/geochemj.2.0583
  61. Izumi, Y., L. Zou, K. Kikuta, and M. Sato, 2020, Iterative atmospheric phase screen compensation for near-real-time ground-based InSAR measurements over a mountainous slope, IEEE Trans. Geosci. Remote Sens., 58, 5955-5968, doi:10.1109/TGRS.2020.2973533
  62. Kagawa, T. and Y. Ohta, 2020, Prior and Real-Time Estimations of Ground Motions, Tsunamis, and Other Geodynamic Hazards, J. Disaster Res., 15(2), 144-151, doi:10.20965/jdr.2020.p0144
  63. Kame, N., 2021, Pre-p gravity signals from dynamic earthquake rupture: modelling and observations, Phill. Trans. A, 379, 1-13, doi: 10.1098/rsta.2020.0136
  64. Kanagawa, K., H. Murayama, A. Sugita, M. Takahashi, M. Sawai, N. Furukawa, and T. Hirose, 2020, Weakening of quartz rocks at subseismic slip rates due to frictional heating, but not to lubrication by wear materials of hydrated amorphous silica or silica gel, Tectonophys., 784, 228429, doi:10.1016/j.tecto.2020.228429
  65. Kaneki, S. and H. Noda, 2020, On approximations of EASY%Ro solutions to estimate maximum temperature from vitrinite reflectance, 地質学雑誌, 126(11), 655-661, doi:10.5575/geosoc.2020.0035
  66. Kano, M. and A. Kato, 2020, Detailed spatial slip distribution for short-term slow slip events along the Nankai subduction zone, southwest Japan, J. Geophys. Res.: Solid Earth, 125(7), e2020JB019613, doi:10.1029/2020JB019613
  67. Kano, M., S. Miyazaki, Y. Ishikawa, and K. Hirahara, 2020, Adjoint-based direct data assimilation of GNSS time series for optimizing frictional parameters and predicting postseismic deformation following the 2003 Tokachi-oki earthquake, Earth Planet. Space, 72, 159, doi:10.1186/s40623-020-01293-0
  68. Kashiwagi, H., J. Nakajima, Y. Yukutake, R. Honda, Y. Abe, and S. Sakai, 2020, Seismic constraint on the fluid-bearing systems feeding Hakone volcano, central Japan, J. Geophys. Res.: Soild Earth, 125(11), e2020JB020341, doi:10.1029/2020JB020341
  69. Kato, A. and S. Nakagawa, 2020, Detection of deep low-frequency earthquakes in the Nankai subduction zone over 11 years using a matched filter technique, Earth Planet. Space, 72, 128, doi:10.1186/s40623-020-01257-4
  70. Kato, A., S. Sakai, S. Matsumoto, and Y. Iio, 2021, Conjugate faulting and structural complexity on the young fault system associated with the 2000 Tottori earthquake, Commun. Earth Environ., 2, 13, doi:10.1038/s43247-020-00086-3
  71. Katsumata, A., M. Tanaka, and T. Nishimiya, 2021, Rapid estimation of tsunami earthquake magnitudes at local distance, Earth Planet. Space, 73, 72, doi:10.1186/s40623-021-01391-7
  72. Katsumata, K. and J. Zhuang, 2020, A New Method for Imaging Seismic Quiescence and Its Application to the Mw = 8.3 Kurile Islands Earthquake on 15 November 2006, Pure Appl. Geophys., 177, 3619-3630, doi:10.1007/s00024-020-02498-w
  73. Khoshmanesh, M., M. Shirzaei, and N. Uchida, 2020, Deep slow-slip events promote seismicity in northeastern Japan megathrust, Earth Planet. Sci. Lett., 540, 116261, doi:10.1016/j.epsl.2020.116261
  74. Kilb, D., J. Bunn, J. Saunders, E. Cochran, S. Minson, A. Baltay, C. O’Rourke, M. Hoshiba, and Y. Kodera, 2021, The PLUM earthquake early warning algorithm: A case study of west coast, USA, J. Geophys. Res.: Solid Earth, e2020JB021053, doi:10.1029/2020JB021053
  75. Kimura, H., T. Kimura, Y. Asano, T. Kunugi, and S. Aoi, 2020, An improved rapid-source parameter determination system (AQUA) for giant earthquakes, IEEE Syst. J., 14, 3, 3451-3462, doi:10.1109/JSYST.2020.2983430
  76. Kimura, M., 2021, Detection and quantification of pre-P gravity signals from the 2011 Tohoku-Oki earthquake─Proposal of pre-P gravity seismology through observation and theoretical modeling─, Doctoral Dissertation, University of Tokyo, Japan
  77. Kitagawa, Y., N. Matsumoto, and T. Kimura, 2020, Estimation of fault models for short-term slow slip events from groundwater pressure in soft sedimentary layers, Earth Planet. Space, 72, 90, doi:10.1186/s40623-020-01218-x
  78. Kobayashi, H., K. Koketsu, H. Miyake, and H. Kanamori, 2021, Similarities and differences in the rupture processes of the 1952 and 2003 Tokachi-oki earthquakes, J. Geophys. Res.: Solid Earth, 126(1), e2020JB020585, doi:10.1029/2020JB020585
  79. Koike, M. and H. Nakamichi, 2021, Dike inflation process beneath Sakurajima volcano, Japan, during the earthquake swarm of August 15, 2015, Front. Earth Sci. 8, 600223, doi:10.3389/feart.2020.600223
  80. Kubo, H. and T. Nishikawa, 2020, Relationship of preseismic, coseismic, and postseismic fault ruptures of two large interplate aftershocks of the 2011 Tohoku earthquake with slow-earthquake activity, Sci. Rep., 10, 12044, doi:10.1038/s41598-020-68692-x
  81. Kubota, T., T. Saito, N. Y. Chikasada, and W. Suzuki, 2020, Ultra-broadband seismic and tsunami wave observation of high-sampling ocean-bottom pressure gauge covering periods from seconds to hours, Earth Space Sci., 7(10), e2020EA011972, doi:10.1029/2020EA001197
  82. Kumazawa, T., Y. Ogata, and S. Toda, 2020, Wide-area seismicity anomalies before the 2011 Tohoku-Oki earthquake, Geophys. J. Int., 223(2), 1304-1312, doi:10.1093/gji/ggaa356
  83. Kundu, B., B. Senapati, A. Matsushita, and K. Heki, 2021, Atmospheric wave energy of the 2020 August 4 explosion in Beirut, Lebanon, from ionospheric disturbances, Sci. Rep., 11, 2793, doi:10.1038/s41598-021-82355-5
  84. Kuritani, T., M. Nakagawa, J. Nishimoto, T. Yokoyama, and T. Miyamoto, 2020, Magma plumbing system for the Millennium Eruption at Changbaishan volcano, China: constraints from whole-rock U-Th disequilibrium, Lithos, 366-367, 105564, doi:10.1016/j.lithos.2020.105564
  85. Le, H.V., T. Murata, and M. Iguchi, 2020, Can eruptions be predicted? Short-term prediction of volcanic eruptions via attention-based long short-term memory, AAAI-20/IAAI-20 Technical Tracks, 08, 34, 13320-13325, doi:10.1609/aaai.v34i08.7043
  86. Liu, J.-Y., C.-Y., Liu, Y.-I. Chen, T.-R. Wu, M.-J. Chung, T.-C. Liu, Y.-L. Tsai, L. C. Chang, C.-K. Chao, D. Ouzounov, and K. Hattori, 2020, The source detection of 28 September 2018 Sulawesi tsunami by using ionospheric GNSS total electron content disturbance, Geosci. Lett., 7, 11, doi:10.1186/s40562-020-00160-w
  87. Liu, Y., J. Zhuang, and C. Jiang, 2021, Background seismicity before and after the 1 976 Ms7.8 Tangshan earthquake: Is its aftershock sequence still continuing?, Seismol. Res. Lett., 92(2A), 877-885, doi:10.1785/0220200179
  88. Machida, Y., S. Nishida, T. Kimura, and E. Araki, 2020, Mobile pressure calibrator for the development of submarine geodetic monitoring systems, J. Geophys. Res.: Solid Earth, 125(9), e2020JB020284, doi:10.1029/2020JB020284
  89. Maeda, Y., Y. Yamanaka, T. Ito, and S. Horikawa, 2021, Machine learning based detection of volcano seismicity using the spatial pattern of amplitudes, Geophys. J. Int., 225(1), 416-444, doi:10.1093/gji/ggaa593
  90. Maher, S.P., R.S. Matoza, C.D. de Groot-Hedlin, K.L. Gee, D. Fee, and A. Yokoo, 2020, Investigating spectral distortion of local volcano infrasound by nonlinear propagation at Sakurajima Volcano, Japan, J. Geophys. Res.: Solid Earth 125(3), e2019JB018284, doi:10.1029/2019JB018284
  91. Matsumoto, H. and E. Araki, 2021, Drift characteristics of DONET pressure sensors determined from in-situ and experimental measurements, Front. Earth Sci., 8:600966, doi:10.3389/feart.2020.600966
  92. Matsumoto, H., E. Araki, T. Kimura, G. Fujie, K. Shiraishi, T. Tonegawa, K. Obana, R. Arai, Y. Kaiho, Y. Nakamura, T. Yokobiki, S. Kodaira, N. Takahashi, R. Ellwood, V. Yartsev, and M. Karrenbach, Detection of hydroacoustic signals on a fiber-optic submarine cable, Sci. Rep., 11, 2797, doi:10.1038/s41598-021-82093-8
  93. Matsumoto, S., T. Okada, T. Terakawa, M. Uyeshima, and Y. Iio, 2020, The Advancement of Research on Inland Earthquake Generation 2014-2018, J. Disaster Res., 15(2), 96-105, doi:10.20965/jdr.2020.p0096
  94. Matsushima, N., M. Utsugi, S. Takakura, T. Yamasaki, M. Hata, T. Hashimoto, and M. Uyeshima, 2020, Magmatic-hydrothermal system of Aso Volcano, Japan, inferred from electrical resistivity structures, Earth Planet. Space, 72, 57, doi:10.1186/s40623-020-01180-8
  95. Matsushima, S., 2020, Core-to-Core Collaborative Research between Earthquake Research Institute, University of Tokyo and Disaster Prevention Research Institute, Kyoto University during FY2014 to FY2018, J. Disaster Res., 15(2), 187-201, doi:10.20965/jdr.2020.p0187
  96. Matsu'ura, R.S., H. Tanaka, M. Furumura, T. Takahama, and A. Noda, 2020, A new ground‐motion prediction equation of Japanese instrumental seismic intensities reflecting source type characteristics in Japan, Bull. Seismol. Soc. Am., 110(6), 2661-2692, doi:10.1785/0120180337
  97. McHugh, C., M. Seeberb, L. Rasburyc, T. Strasserd, M. Kioka, A. Kanamatsu, T. Ikehara, and K. Usami, 2020, Isotopic and sedimentary signature of megathrust ruptures along the Japan subduction margin, Marine Geology, 428, 106283, doi:10.1016/j.margeo.2020.106283
  98. Mindaleva, D., M. Uno, F. Higashino, T. Nagaya, A. Okamoto, and N. Tsuchiya, 2020, Rapid fluid infiltration and permeability enhancement during middle-lower crustal fracturing: Evidence from amphibolite-granulite-facies fluid-rock reaction zones, Sor Rondane Mountains, East Antarctica, Lithos, 372-373, 105521, doi:10.1016/j.lithos.2020.105521
  99. Minson, S., J. Saunders, J. Bunn, E. Cochran, A. Baltay, D. Kilb, M. Hoshiba, and Y. Kodera, 2020, Real-time performance of the PLUM earthquake early warning method during the 2019 M6.4 and 7.1 Ridgecrest, California, earthquakes, Bull. Seismol. Soc. Am., 110(4), 1887-1903, doi:10.1785/0120200021
  100. Mitogawa, T. and T. Nishimura, 2020, Coulomb stress change on inland faults during megathrust earthquake cycle in southwest Japan, Earth Planet. Space, 72, 66, doi:10.1186/s40623-020-01174-6
  101. Mitsuoka, A., A. Shito, S. Matsumoto, Y. Yamashita, M. Nakamoto, S. Sakai, Y. Iio, H. Shimizu, K. Goto, T. Okada, M. Ohzono, Y. Yamanaka, M. Kosuga, M. Yoshimi and Y. Asano, 2020, Spatiotemporal change in the stress state around the hypocentral area of the 2016 Kumamoto earthquake sequence, J. Geophys. Res.: Solid Earth, 125(9), e2019JB018515, doi:10.1029/2019JB018515
  102. Mitsuoka, T., A. Toramaru, A. Harijoko, and H.E. Wibowo, 2021, Eruption types and conduit dynamics of Kukusan and Genteng volcanoes of the Ijen volcanic complex, Indonesia, Memoirs of the Faculty of Sciences, Kyushu University, Series D Earth and Planetary Sciences, Volume XXXV, 1, 1-17, doi:10.5109/4371995
  103. Miyashita, T., N. Mori, and K. Goda, 2020, Uncertainty of probabilistic tsunami hazard assessment of Zihuatanejo (Mexico) due to the representation of tsunami variability, Coast. Eng. J., 62(3), 413-428, doi:10.1080/21664250.2020.1780676
  104. Mngadi, S., A. Tsutsumi, Y. Onoe, M.S.D. Manzi, R. Durrheim, Y. Yabe, H. Ogasawara, S. Kaneki, N. Wechsler, A. Ward, M. Naoi, H. Moriya, and M. Nakatani, 2020, The effect of a gouge layer on rupture propagation along brittle shear fractures in deep and high-stress mines, Int. J. Rock Mech. Min. Sci., 137, 104454, doi:10.1016/j.ijrmms.2020.104454
  105. Muafiry, I. N. and K. Heki, 2020, 3D tomography of the ionospheric anomalies immediately before and after the 2011 Tohoku-oki (Mw9.0) earthquake, J. Geophys. Res.: Space Phys., 125(10), e2020JA027993, doi:10.1029/2020JA027993
  106. Mujin, M. and M. Nakamura, 2020, Late-stage groundmass differntiattion as a record of magma stagnation, fragmentation, and rewelding, Bull. Volcanol., 82, 48, doi:10.1007/s00445-020-01389-1
  107. Mulia, I.E., T. Ishibe, K. Satake, A.R. Gusman, and S. Murotani, 2020, Regional probabilistic tsunami hazard assessment associated with active faults along the eastern margin of the Sea of Japan, Earth Planet. Space, 72, 123, doi:10.1186/s40623-020-01256-5
  108. Nakagomi, K., T. Terakawa, S. Matsumoto, and S. Horikawa, 2021, Stress and pore-fluid pressure control of seismicity rate changes following the 2016 Kumamoto earthquake, Japan, Earth Planet. Space, 73, 11, doi:10.1186/s40623-020-01329-5
  109. Nakamura Y., T. Fujiwara, S. Kodaira, S. Miura, and K. Obana, 2020, Correlation of frontal prism structures and slope failures near the trench axis with shallow megathrust slip at the Japan Trench, Sci. Rep., 10, 11607, doi:10.1038/s41598-020-68449-6
  110. Nakamura, H., A. Sano, S. Kagami, T. Yokoyama, A. Ishikawa, T. Komiya, and H. Iwamori, 2020, Compositional heterogeneity of Archean mantle estimated from Sr and Nd isotopic systematics of basaltic rocks from North Pole, Australia, and the Isua supracrustal belt, Greenland, Precambrian Res., 347, 105803, doi:10.1016/j.precamres.2020.105803
  111. Nakano, M., S. Murphy, R. Agata, Y. Igarashi, M. Okada, and T. Hori, 2020, Self-similar stochastic slip distributions on a non-planar fault for tsunami scenarios for megathrust earthquakes, Prog. Earth Planet. Sci., 7, 45, doi:10.1186/s40645-020-00360-0
  112. Nakata, K., A. Katsumata, and A. Muhari, 2020, Submarine landslide source models consistent with multiple tsunami records of the 2018 Palu tsunami, Sulawesi, Indonesia, Earth Planet. Space, 72, 44, doi:10.1186/s40623-020-01169-3
  113. Nakatani, M., 2020, Evaluation of phenomena preceding earthquakes and earthquake predictability, J. Disast. Res., 15(2), 112-143, doi:10.20965/jdr.2020.p0112
  114. Nanjo, K.Z., 2020a, Were changes in stress state responsible for the 2019 Ridgecrest, California, earthquakes?, Nat. Commun., 11, 3082, doi:10.1038/s41467-020-16867-5
  115. Nanjo, K.Z., 2020b, Capability of Tokai strainmeter network to detect and locate a slow slip: First results, Pure Appl. Geophys., 177, 2701-2718, doi:10.1007/s00024-019-02367-1
  116. Nishimura, T., 2020, Slow slip events in the Kanto and Tokai regions of central Japan detected using GNSS data during 1994-2020, Geochem. Geophys. Geosyst., 22(2), e2020GC009329, doi:10.1029/2020GC009329
  117. Nishimura, T., K., Emoto, H. Nakahara, S. Miura, M. Yamamoto, S. Sugimura, A. Ishikawa and T. Kimura, 2021, Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and acoustic sensing system, Sci. Rep., 11, 6319, doi:10.1038/s41598-021-85621-8
  118. Noda, H., 2021, Shear strength of a shear zone in the brittle-plastic transition based on tensorial strain partitioning, J. Struct. Geol., 146, 104313, doi:10.1016/j.jsg.2021.104313
  119. Noda, H., D.S.K. Sato, and Y. Kurihara, 2020, Comparison of two time-marching schemes for dynamic rupture simulation with a space-domain BIEM, Earth Planet. Space, 72, 76, doi:10.1186/s40623-020-01202-5
  120. Nomura, Y., M. Nemoto, N. Hayashi, S. Hanaoka, M. Murata, T. Yoshikawa, Y. Masutani, E. Maeda, O. Abe, and H.K.M. Tanaka, 2020, Pilot study of eruption forecasting with muography using convolutional neural network, Sci. Rep., 10, 5272, doi:10.1038/s41598-020-62342-y
  121. Oba, A., T. Furumura, and T. Maeda, 2020, Data assimilation-based early forecasting of long-period ground motions for large earthquakes along the Nankai Trough, J. Geophys. Res.: Soild Earth, 125(6), e2019JB019047, doi:10.1029/2019JB019047
  122. Obara, K. and T. Nishimura, 2020, Main results from the program promotion panel for subduction-zone earthquakes, J. Disast. Res., 15, 87-95, doi:10.20965/jdr.2020.p0087
  123. Obara, K., 2020, Characteristic activities of slow earthquakes in Japan, Proceedings of the Japan Academy, Series B, 96(7), 297-315, doi:10.2183/pjab.96.022
  124. Ogata, Y. and T. Omi, 2020, Statistical monitoring and early forecasting of the earthquake sequence: Case studies after the 2019 M 6.4 Searles Valley earthquake, California, Bull. Seismol. Soc. Am., 110(4), 1781-1798, doi:10.1785/0120200023
  125. Ogata, Y., 2021, Visualizing heterogeneities of earthquake hypocenter catalogs: modeling, analysis, and compensation, Prog. Earth Planet. Sci., 8, 8, doi:10.1186/s40645-020-00401-8
  126. Ogata, Y., K. Katsura, M. Tanemura, D. Harte, and J. Zhuang, 2021, Bayesian seismicity analysis based on Delaunay triangle nets: Hierarchical Space-Time Point Process Models(HIST-PPM; including HIST-ETAS model)Computer Science Monograph No.35, Institute of Statistical Mathematics (link)
  127. Ohashi, M., M. Ichihara, F. Maeno, B. Kennedy, and D. Gravley, 2020, Quantitative measurement of bubble textures in pumice clasts using a digital stereo microscope with low-angled ring illumination, Earth Planet. Space, 72, 185, doi:10.1186/s40623-020-01320-0
  128. Ohtani, M., M. Nakatani, and N. Kame, 2021, Time to seismic failure induced by repeating SSEs in a single-degree-of-freedom spring-slider model, Geophys. J. Int., 224(2), 1242-1255, doi:10.1093/gji/ggaa489
  129. Omori, Y., H. Nagahama, Y. Yasuoka, and J. Muto, 2021, Radon degassing triggered by tidal loading before an earthquake, Sci. Rep., 11, 4092, doi:10.1038/s41598-021-83499-0
  130. Ootani, Y., J. Xu, N. Takahashi, K. Akagami, S. Sakaki, Y. Wang, N. Ozawa, T. Hatano, K. Adachi, and M. Kubo, 2020, Self-formed double tribolayers play collaborative roles in achieving super-low friction in aqueous environment, J. Phys. Chem. C, 124, 15, 8295-8303, doi:10.1021/acs.jpcc.0c02068
  131. Ozawa S, Kawabata, R, Kokado K, Yarai, H., 2020, Long-term slow slip events along the Nankai trough delayed by the 2016 Kumamoto earthquake, Japan, Earth Planet. Space, 72, 61, doi:10.1186/s40623-020-01189-z
  132. Parrot, M., V. Tramutoli, Tiger J.Y. Liu, S. Pulinets, D. Ouzounov, N. Genzano, M. Lisi, K. Hattori, and A. Namgaladze, 2021, Atmospheric and ionospheric coupling phenomena associated with large earthquakes, Eur. Phys. J. Special Topics, 230, 197-225, doi:10.1140/epjst/e2020-000251-3
  133. Roy, S. and T. Hatano, 2020, Creep failure in a threshold activated dynamics: Role of temperature during a sub-critical loading, Phys. Rev. Res., 2, 023104, doi:10.1103/PhysRevResearch.2.023104
  134. Saitoh, K., T. Hatano, A. Ikeda, and B.P. Tighe, 2020, Stress Relaxation above and below the Jamming Transition, Phys. Rev. Lett. 124, 118001, doi:10.1103/PhysRevLett.124.118001
  135. Sakamoto, M., 2021, Transferring historical disaster memories: the 1925 North Tajima earthquake, J. Disaster Res., 16(2), 163-169, doi:10.20965/jdr.2021.p0163
  136. Sano, Y., T. Kagoshima, N. Takahata, K. Shirai, J.-O. Park, G. T. Snyder, T. Shibata, J. Yamamoto, Y. Nishio, A-T Chen, S. Xu, D. Zhao, and D. L. Pinti, 2020, Groundwater anomaly related to CCS-CO2 injection and the 2018 Hokkaido Eastern Iburi Earthquake in Japan, Front. Earth Sci., 8, 611010, doi:10.3389/feart.2020.611010
  137. Satake, K. and T. Ishibe, 2020, Toward homogeneous estimate of seismicity from historical materials: number of felt earthquakes in Tokyo since 1668, Seismol. Res. Lett., 91(5), 2601-2610, doi:10.1785/0220200060
  138. Sato, Y., S. Shinzato, T. Ohmura, T. Hatano, and S. Ogata, 2020, Unique universal scaling in nanoindentation pop-ins, Nat. Commun., 11, 4177, doi:10.1038/s41467-020-17918-7
  139. Sawa, S., N. Miyajima, J. Muto, and H. Nagahama, 2021 (in press), Strain-induced partial serpentinization of germanate olivine with a small amount of water, Am. Mineral., doi:10.2138/am-2021-7735
  140. Sawai, Y., 2020, Subduction zone paleoseismology along the Pacific coast of northeast Japan -progress and remaining problems, Earth-Sci. Rev., 208, 103261, doi:10.1016/j.earscirev.2020.103261
  141. Sawazaki, K. and T. Nakamura, 2020, “N”-shaped Y/X coda spectral ratio observed for in-line-type OBS networks; S-net and ETMC: interpretation based on natural vibration of pressure vessel, Earth Planet. Space, 72, 130, doi:10.1186/s40623-020-01255-6
  142. Seki, K., W. Kanda, K. Mannen, S. Takakura, T. Koyama, R. Noguchi, Y. Yukutake, M. Ishikawa, M. Fukai. M. Harada, and Y. Abe, 2021, Imaging the source region of the 2015 phreatic eruption at Owakudani, Hakone Volcano, Japan, using high‐density audio‐frequency magnetotellurics, Geophys. Res. Lett., 48(1), e2020GL091568, doi:10.1029/2020GL091568
  143. Shimizu, K., Y. Yagi, R. Okuwaki, and Y. Fukahata, 2020, Development of an inversion method to extract information on fault geometry from teleseismic data, Geophys. J. Int., 220, 1055-1065, doi:10.1093/gji/ggz496
  144. Shimizu, K., Y. Yagi, R. Okuwaki, and Y. Fukahata, 2021, Construction of fault geometry by finite-fault inversion of teleseismic data, Geophys. J. Int., 224, 1003-1014, doi:10.1093/gji/ggaa501
  145. Shinohara, H., R. Kazahaya, T. Ohminato, T. Kaneko, U. Tsunogai, and M. Morita, 2020, Variation of volcanic gas composition at a poorly accessible volcano: Sakurajima, Japan, J. Volcanol. Geotherm. Res. 407, 107098, doi:10.1016/j.jvolgeores.2020.107098
  146. Shinohara, M., T. Yamada, K. Uehira, S. Sakai, H. Shiobara, and T. Kanazawa, 2021, Development and operation of an Ocean Bottom Cable Seismic and Tsunami observation system (OBCST) in the source region of the Tohoku-oki earthquake, Earth Space Sci., 8(3), e2020EA001359, doi:10.1029/2020EA001359
  147. Shiobara, H, A. Ito, H. Sugioka, M. Shinohara, and T. Sato, 2021, Tilt observations at the seafloor by mobile ocean bottom seismometers, Front. Earth Sci., 8, 599810, doi:10.3389/feart.2020.599810
  148. Shiomi, K., T. Takeda, and T. Ueno, 2021, Seismological evidence of a dehydration reaction in the subducting oceanic crust beneath western Shikoku in southwest Japan, Geophys. J. Int., 224, 1, 151-168, doi:10.1093/gji/ggaa423
  149. Shiraishi K., Y. Yamada, M. Nakano, M. Kinoshita, and G. Kimura, 2020, Three-dimensional topographic relief of the oceanic crust may control the occurrence of shallow very-low-frequency earthquakes in the Nankai Trough off Kumano, Earth, Planet. Space, 72, 72, doi:10.1186/s40623-020-01204-3
  150. Shito, A., S. Matsumoto, T. Ohkura, H. Shimizu, S. Sakai, Y. Iio, H. Takahashi, H. Yakiwara, T. Watanabe, M. Kosuga, T. Okada, M. Yoshimi, and Y. Asano, 2020, 3-D intrinsic and scattering seismic attenuation structures beneath Kyushu, Japan. J. Geophys. Res.: Solid Earth, 125(8), e2019JB018742, doi:10.1029/2019JB018742
  151. Song, R., K. Hattori, X. Zhang, and S. Saito, 2020, Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China Seismo-Electromagnetic Satellite, J. Atmospheric and Solar-Terrestrial Phys., 205, 105291, doi:10.1016/j.jastp.2020.105291
  152. Sugiura, M., R. Nouchi, A. Honda, S. Sato, T. Abe, and F. Imamura, 2020, Survival-oriented personality factors are associated with various types of social support in an emergency disaster situation, PLoS One, 15(2), doi:10.1371/journal.pone.0228875
  153. Supino, M., N. Poiata, G. Festa, J.P. Vilotte, C. Satriano, and K. Obara, 2020, Self-similarity of low-frequency earthquakes, Sci. Rep., 10, 6523, doi:10.1038/s41598-020-63584-6
  154. Susukida, Y., K. Katsumata, M. Ichiyanagi, M. Ohzono, H. Aoyama, R. Tanaka, M. Takada, T. Yamaguchi, K. Okada, , H. Takahashi, S. Sakai, S. Matsumoto, T. Okada, T. Matsuzawa, H. Miyamachi, S. Hirano, Y. Yamanaka, S. Horikawa, M. Kosuga, H. Katao, Y. Iio, A. Nagaoka, N. Tsumura, T. Ueno, and The Group for the Aftershock Observations of the 2018 Hokkaido Eastern Iburi Earthquake, 2021, Focal mechanisms and the stress field in the aftershock area of the 2018 Hokkaido Eastern Iburi earthquake (M-JMA=6.7), Earth Planet. Space, 73, 1, doi:10.1186/s40623-020-01323-x
  155. Suzuki, T. ,2021, Characteristic sensitivity of turbulent flow within a porous medium under initial conditions, J. Phys. Soc. Jpn., 90, 024401, doi:10.7566/JPSJ.90.024401
  156. Tajima, Y., S. Nakada, F. Maeno, T. Huruzono, M. Takahashi, A. Inamura, T. Matsushima, M. Nagai, and J. Funasaki, 2020, Shallow magmatic hydrothermal eruption in April 2018 on Ebinokogen Ioyama Volcano in Kirishima Volcano Group, Kyushu, Japan, Geosciences, 10, 183, doi:10.3390/geosciences10050183
  157. Takagi, R., G. Toyokuni, and N. Chikasada, 2021, Ambient noise correlation analysis of the S-net records: extracting surface wave signals below instrument noise levels, Geophys. J. Int., 224, 1640-1657, doi:10.1093/gji/ggaa548
  158. Takahashi, N. and S. Toda, 2021, Evaluating variability in coseismic slips of paleoearthquakes from an incomplete slip history: an example from displaced terrace flights across the Kamishiro fault, central Japan, Prog. Earth Planet. Sci., 8, 15, doi:10.1186/s40645-021-00407-w
  159. Takarada, S. and H. Hoshizumi, 2020, Distribution and eruptive volume of Aso-4 pyroclastic density current and tephra fall deposits, Japan: a M8 super-eruption, Front. Earth Sci., 8, 170, doi:10.3389/feart.2020.00170
  160. Takarada, S. and J.C. Bandibas, 2020, Volcanic hazards information and assessment systems, in Forecasting and Planning for Volcanic Hazards, Risks, and Disasters, ed. P. Papale, Elsevier, 565-584, doi:10.1016/B978-0-12-818082-2.00015-9
  161. Takebe, M., Y. Nishi, and M. Ban, 2021, Evolution of the calc-alkaline magma feeding system of the Komakusadaira pyroclastics in Zao Volcano, NE Japan, Bull. Volcanol., 83, 12, doi:10.1007/s00445-020-01430-3
  162. Tamakuma, Y., M. Hosoda, Y. Omori, H. Nagahama, T. Ishikawa, M. Shimo, and S. Tokonami, 2021(in press), Car-borne survey for a black shale area and influence of snowfall on absorbed dose rate in air of a coastal area, Radiat. Environ. Medicine, 10(2)
  163. Tanioka, Y., 2020, Improvement of near-field tsunami forecasting method using ocean-bottom pressure sensor network (S-net), Earth Planet. Space, 72, 132, doi:10.1186/s40623-020-01268-1
  164. Terakawa, T., W. Seo, K.H. Kim, and J.H. Ree, 2020, 3D pore-fluid pressures in source region of 2017 Pohang earthquake inferred from earthquake focal mechanisms, Geophys. Res. Lett., 47(9), e2019GL085964, doi:10.1029/2019GL085964
  165. Toda, S. and R. S. Stein, 2020, Long- and Short-term stress interaction of the 2019 Ridgecrest sequence and Coulomb-based earthquake forecasts, Bull. Seismol. Soc. Am., 110, 1765-1780, doi:10.1785/0120200169
  166. Tomita, F., T. Iinuma, Y. Ohta, R. Hino, M. Kido, and N. Uchida, 2020, Improvement on spatial resolution of a coseismic slip distribution using postseismic geodetic data through a viscoelastic inversion, Earth Planet. Space, 72, 84, doi:10.1186/s40623-020-01207-0
  167. Tomonaga, Y., K. Yagasaki, J.-O. Park, J. Ashi, S. Toyoda, N. Takahata, and Y. Sano, 2020, Fluid dynamics along the Nankai Trough: He isotopes reveal direct seafloor mantle-fluid emission in the Kumano Basin (southwest Japan), ACS Earth Space Chem., 4(11), 2105-2112, doi:10.1021/acsearthspacechem.0c00229
  168. Tonegawa, T., T. Kimura, and E. Araki, 2021, Near-field body-wave extraction from ambient seafloor noise in the nankai subduction zone, Front. Earth Sci., 8, 699, doi:10.3389/feart.2020.610993
  169. Tonegawa, T., Y. Yamashita, T. Takahashi, M. Shinohara, Y. Ishihara, S. Kodaira and Y. Kaneda, 2020, Spatial relationship between shallow very low frequency earthquakes and the subducted Kyushu-Palau Ridge in the Hyuga-nada region of the Nankai subduction zone, Geophys. J. Int., 222, 1542-1554, doi:10.1093/gji/ggaa264
  170. Tran, M. T., V. Vi, H. Miyake, K. Irikura, and D. Bui, 2020, Empirical Green’s function simulations toward site-specific ground motion prediction in Vietnam, Pure Appl. Geophys., 177, 2281-2298, doi:10.1007/s00024-020-02491-3
  171. Tseng, K-H., Y. Ogawa, Nurhasan, S.B. Tank, N. Ujihara, Y. Honkura, A. Terada, Y. Usui and W. Kanda, 2020, Anatomy of active volcanic edifice at the Kusatsu-Shirane volcano, Japan, by magnetotellurics: hydrothermal implications for volcanic unrests, Earth Planet. Space, 72, 161, doi:10.1186/s40623-020-01283-2
  172. Tsuru, T., J.-O. Park, K. Amakasu, T. No, K. Arai, T. Inoue, S. Furuyama, K. Uchida, and Y. Nakamura, 2020, Possible fluid discharge associated with faults observed by a high-resolution dense-2D seismic reflection survey in Uchiura Bay off Numazu, Japan, Earth Planet. Space, 72, 121, doi:10.1186/s40623-020-01242-x
  173. Tsutsumi, R., K. Hattori, C. Yoshino, and N. Genzano, 2020, Detection of thermal changes related to the 2011 Shinmoedake volcano activity, Japan: Spatiotemporal variation of singularity of MODIS data after discriminating false changes due to cloud, Remote Sensing, 12, 2637, doi:10.3390/rs12162637
  174. Uchida, N., J. Nakajima, K. Wang, R. Takagi, K. Yoshida, T. Nakayama, R. Hino, T. Okada, and Y. Asano, 2020a, Stagnant forearc mantle wedge inferred from mapping of shear-wave anisotropy using S-net seafloor seismometers, Nat. Commun., 11(1), 5676, doi:10.1038/s41467-020-19541-y
  175. Uchida, N., R. Takagi, Y. Asano, and K. Obara, 2020b, Migration of shallow and deep slow earthquakes toward the locked segment of the Nankai megathrust, Earth Planet. Sci. Lett., 531, 115986, doi:10.1016/j.epsl.2019.115986
  176. Uchide, T., 2020, Focal mechanisms of small earthquakes beneath the Japanese islands based on first-motion polarities picked using deep learning, Geophys. J. Int., 223(3), 1658-1671, doi:10.1093/gji/ggaa401
  177. Ueda, T., A. Kato, Y. Ogata, and L. Yamaya, 2021, Spatial Variations in Seismicity Characteristics in and Around the Source Region of the 2019 Yamagata-Oki Earthquake, Japan, Earth Planet. Space, 73, 40, doi:10.1186/s40623-020-01325-9
  178. Ueki, K., T. Kuwatani, A. Okamoto, S. Akaho, and H. Iwamori, 2020, Thermodynamic modeling of hydrous-melt-olivine equilibrium using exhaustive variable selection, Phys. Earth Planet. Inter, 300, 106430, doi:10.1016/j.pepi.2020.106430
  179. Varini, E., A. Peresan, and J. Zhuang, 2020, Topological comparison between the stochastic and the nearest-neighbour earthquake declustering methods through network analysis, J. Geophys. Res.: Solid Earth, 125(8), e2020JB019718, doi:10.1029/2020JB019718
  180. Wada, Y., T. Enoto, Y. Nakamura, T. Morimoto, M. Sato, T. Ushio, K. Nakazawa, T. Yuasa, D. Yonetoku, T. Sawano, M. Kamogawa, H. Sakai, Y. Furuta, K. Makishima, and H. Tsuchiya, 2020, High peak-current lightning discharges associated with downward terrestrial Gamma-ray flashes, J. Geophys. Res.: Atmospheres, 125(4), e2019JD031730, doi:10.1029/2019JD031730
  181. Wallis, S. R., F. Maeno, and S. Toda, 2020, Encyclopedia of Geology 2nd Edition Tectonics and Structural Geology: Japan and Korean Peninsula, Academic Press Elsevier Ltd.. 526-543, doi:10.1016/B978-0-08-102908-4.00087-4
  182. Wang, Y., K. Satake, T. Maeda, M. Shinohara, and S. Sakai, 2020a, A Method of Real-Time Tsunami Detection Using Ensemble Empirical Mode Decomposition, Seismol. Res. Lett., 91(5), 2851-2861, doi:10.1785/0220200115
  183. Wang, Y., M. Heidarzadeh, K. Satake, I. E. Mulia, I. E., and M. Yamada, 2020b, A Tsunami Warning System Based on Offshore Bottom Pressure Gauges and Data Assimilation for Crete Island in the Eastern Mediterranean Basin, J. Geophys. Res.: Solid Earth, 125(10), e2020JB020293, doi:10.1029/2020jb020293
  184. Wang, Z.W., and D. Zhao, 2021, 3D anisotropic structure of the Japan subduction zone, Sci. Adv. 7, eabc9620, doi:10.1126/sciadv.abc9620
  185. Xu J., R. Uzuoka, and K.Ueda, 2021, Response of Slopes to Earthquakes and Rainfall, In: Tiwari B., K. Sassa, P.T. Bobrowsky, K. Takara (eds) Understanding and Reducing Landslide Disaster Risk. WLF 2020. ICL Contribution to Landslide Disaster Risk Reduction, Springer, Cham., doi:10.1007/978-3-030-60706-7_30
  186. Yabe S., K. Imanishi, and K. Nishida, 2020a, Two-step seismic noise reduction caused by COVID-19 induced reduction in social activity in metropolitan Tokyo, Japan, Earth Planet. Space, 72, 167, doi:10.1186/s40623-020-01298-9
  187. Yabe, S., R. Fukuchi, Y. Hamada, and G. Kimura, 2020b, A new method for the empirical conversion of logging data to clay mineral fraction in the Nankai accretionary prism, Earth Planet. Space, 72, 166, doi:10.1186/s40623-020-01303-1
  188. Yaguchi, M., 2020, Abnormal discharge of high-temperature hot spring water observed at the abandoned well in the Okuhida hot spring area during the earthquake swarm occurred at Gifu-Nagano district, central Japan, Journal of Hot Spring Sciences, 70(2), 70-79 (link)
  189. Yamaguchi, Y., S. Biswas, T. Hatano, and L. Goehring, 2020, Failure processes of cemented granular materials, Phys. Rev. E 102, 052903, doi:10.1103/PhysRevE.102.052903
  190. Yamasaki, T., F. Sigmundsson, and M. Iguchi, 2020, Viscoelastic crustal response to magma supply and discharge in the upper crust: Implications for the uplift of the Aira caldera before and after the 1914 eruption of the Sakurajima volcano, Earth Planet. Sci. Lett., 531, 115981, doi:10.1016/j.epsl.2019.115981
  191. Yamasaki, T., H. Takahashi, M. Ohzono, T.J. Wright, and T. Kobayashi, 2020, The influence of elastic thickness non-uniformity of viscoelastic crustal response to magma emplacement: application to the Kutcharo caldera, eastern Hokkaido, Japan, Geophys. J. Int., 224, 701-718, doi:10.1093/gji/ggaa440
  192. Yamashita S. and A. Toramaru, 2020, Control of magma plumbing systems on long term eruptive behavior of Sakurajima volcano: Insights from CSD (Crystal Size Distribution) analysis, Dynamic Magma Evolution, Geophysical Monograph 254, First Edition, Edited by Vetere, F., doi:10.1002/9781119521143.ch4
  193. Yamori, K. and Sugiyama, T., 2020, Development and social implementation of smartphone app Nige-Tore for improving tsunami evacuation drills: synergistic effects between commitment and contingency, Int. J. Disaster Risk Sci., 11, 751-761, doi:10.1007/s13753-020-00319-1
  194. Yasuda, Y., E. Sato, and K. Suzuki-Kamata, 2020, Paleomagnetic constraints on a time-stratigraphic framework for the evolution of Ohachidaira volcano and the summit caldera, central Hokkaido, Japan, Bull. Volcanol., 82, 71, doi:10.1007/s00445-020-01403-6
  195. Ye, T., X. Chen, Q. Huang, L. Zhao, Y. Zhang, and M. Uyeshima, 2020, Bifurcated crustal channel flow and seismogenic structures of intraplate earthquakes in western Yunnan, China as revealed by three-dimensional magnetotelluric imaging, J. Geophys. Res.: Solid Earth, 125(9), e2019JB018991, doi:10.1029/2019JB018991
  196. Yoshida, K., 2021, Detection of temporal change in near-source attenuation during intense fluid-driven seismicity following the 2011 Tohoku-Oki earthquake, Geophys. J. Int., 224, 138-150, doi:10.1093/gji/ggaa421
  197. Yoshida, K., A. Hasegawa, S. Noguchi, and K. Kasahara, 2020a, Low-frequency earthquakes observed in close vicinity of repeating earthquakes in the brittle upper crust of Hakodate, Hokkaido, northern Japan, Geophys. J. Int., 223, 1724-1740, doi:10.1093/gji/ggaa418
  198. Yoshida, K., N. Uchida, S. Hirahara, T. Nakayama, T. Matsuzawa, T. Okada, Y. Matsumoto, and A. Hasegawa, 2020, 2019 M6.7 Yamagata-Oki earthquake in the stress shadow of 2011 Tohoku-Oki earthquake: Was it caused by the reduction in fault strength?, Tectonophys., 793, 228609, doi:10.1016/j.tecto.2020.228609
  199. Yoshida, K., T. Taira, Y. Matsumoto, T. Saito, K. Emoto, and T. Matsuzawa, 2020b, Stress release process along an intraplate fault analogous to the plate boundary: A case study of the 2017 M5.2 Akita-Daisen earthquake, NE Japan, J. Geophys. Res.: Solid Earth, 125(5), e2020JB019527, doi.org/10.1029/2020JB019527
  200. Yu, Z. and D. Zhao, 2020, Seismic evidence for water transportation in the forearc off Northern Japan, J. Geophys. Res.: Solid Earth, 125(4), e2019JB018600, doi:10.1029/2019JB018600
  201. Yu, Z., K. Hattori, K. Zhu, C. Chi, M. Fan, and X. He, 2020, Detecting earthquake-related anomalies of a borehole strain network based on multi-channel singular spectrum analysis, Entropy, 22, 1086, doi:10.3390/e22101086
  202. Yu, Z., K. Hattori, K. Zhu, M. Fan, D. Marchetti, X. He, and C. Chi, 2021, Evaluation of pre-earthquake anomalies of borehole strain network by using Receiver Operating Characteristic Curve, Remote Sensing, 13(3), 515, doi:10.3390/rs13030515
  203. Z. Yu, K. Zhu, K. Hattori, C. Chi, M. Fan, and X. He, 2021, Borehole strain observations based on a state-space model and ApNe analysis associated with the 2013 Lushan earthquake, IEEE Access, 9, 12167-12179, doi:10.1109/ACCESS.2021.3051614
  204. Yuan, Y., M. Uyeshima, Q. Huang, J. Tang, Q. Li, and Y. Teng, 2020, Continental-scale deep electrical resistivity structure beneath China, Tectonophys., 790, 228559, doi:10.1016/j.tecto.2020.228559
  205. Yukutake, Y., T. Iwata, and Y. Iio, 2020, Estimation of the heterogeneity of stress fields using misfit angles in focal mechanisms, Tectonophys., 790, 228553, doi:10.1016/j.tecto.2020.228553
  206. Zhao, D., 2021, Seismic imaging of northwest pacific and east Asia: New insight into volcanism, seismogenesis and geodynamics, Earth Sci. Rev., 214, 103507, doi:10.1016/j.earscirev.2021.103507
  207. Zhuang, J., M. Matsu'ura, and P. Han, 2021, Critical zone of the branching crack model for earthquakes: Inherent randomness, earthquake predictability, and precursor modelling, Eur. Phys. J. Spec. Top., 230, 409-424, doi:10.1140/epjst/e2020-000272-7
  208. 青山 裕・田中 良・橋本武志・村上 亮・成田翔平, 2020, 十勝岳の火口近傍における力学観測:序報, 北海道大学地球物理学研究報告, 83, 25-48, doi:10.14943/gbhu.83.25
  209. 新谷昌人, 2020, 光ファイバーネットワークを用いた火山活動監視のための重力計測技術に関する研究, 東北大学電気通信研究所研究活動報告, 26, 205-207 (link)
  210. 新谷昌人, 2020, 重力加速度計測による地殻変動・火山活動観測技術, 電子情報通信学会誌, 103, 9, 938-944 (link)
  211. 石崎泰男・濁川 暁・亀谷伸子・吉本充宏・寺田暁彦, 2020, 草津白根火山, 本白根火砕丘群の地質と形成史, 地質学雑誌, 126(9),473-491, doi:10.5575/geosoc.2020.0022
  212. 今西和俊・内出崇彦・椎名高裕・松下レイケン・中井未里, 2020, 中国地域の地殻内応力マップの作成, 地質調査研究報告, 72(1), 23-40, doi:10.9795/bullgsj.72.23
  213. 今西祐一・西山竜一, 2020,弟子屈における絶対重力測定(2019年および2020年), 東京大学地震研究所彙報, 95(1-4), 9-13 (link)
  214. 岩田貴樹・尾形良彦, 2020, Gutenberg-Richter則におけるa値の最尤推定, 地震2, 73, 93-96, doi:10.4294/zisin.2020-1
  215. 岩橋清美・大邑潤三・加納靖之, 2020, 文理融合によって切り拓く歴史地震研究の現在-一八三〇年文政京都地震を事例にして-, 地方史研究, 70(3), 75-79
  216. 内山 高, 2020, 富士火山北麓および富士五湖の水文地質構造と水文学的特徴, 地学雑誌 129, 697-724, doi:10.5026/jgeography.129.697
  217. 榎原雅治, 2020, 文禄5年豊後地震に関する文献史学からの検討, 日本歴史, 856, 18-36
  218. 蝦名裕一・今井健太郎・大林涼子・柄本邦明・都司嘉宣, 2020, 古絵図に基づく安政東海地震の浜名湖周辺における津波浸水域の分析, 歴史地震, 35, 187-206
  219. 及川輝樹・谷健一郎, 2020, 伊豆諸島, 利島火山の新期活動の年代:14C年代値と地形判読を基に,火山, 65, 83-87, doi:10.18940/kazan.65.3_83
  220. 大橋聖和・竹下 徹・平内健一, 2020, 断層帯と断層レオロジーの進化, 地学雑誌, 129(4),473-489, doi:10.5026/jgeography.129.473
  221. 大湊隆雄・渡邉篤志, 2020, 2019年西之島における地震・空振観測, 小笠原研究, 46, 53-68 (link)
  222. 大邑潤三, 2020a, 「災害碑」という概念と分類方法の検討, 歴史都市防災論文集, 14, 115-122 doi:10.34382/00013613
  223. 大邑潤三, 2020b, 1925年北但馬地震における震央付近の人的被害と救援活動―海軍史料の分析を中心に―, 歴史地震, 35, 177-186
  224. 大邑潤三, 2020c, 特集デジタル・ヒストリーの諸実践:歴史災害研究におけるGIS活用の試み, クリオ, 34, 139-140, doi:10.15083/00079645
  225. 小笠原宏, 2020, 南アフリカ大深度金鉱山の地震リスク低減 -2010~2015年度SATREPS研究成果の概要-, 地震ジャーナル, 70, 32-41 (link)
  226. 尾形良彦, 2020, 階層的時空間ETASモデルによる短期・中期予測, 地震予知連絡会会報, 103(12-13), 385-387 (link)
  227. 小沢慎三郎・矢来博司, 2020a, 地殻変動データに基づく力源モデルによる火山活動の監視手法の開発に関する研究(第10年次), 国土地理院調査研究年報, 108-112 (link)
  228. 小沢慎三郎・矢来博司, 2020b, 広域地殻変動データに基づくプレート境界の固着とすべりの時間変化に関する研究(第3年次), 国土地理院調査研究年報, 122-124 (link)
  229. 織原義明, 2020, 「深海魚出現は地震の前兆」は本当か?, 日本地震学会広報誌「なゐふる」, 121, 6-7 (link)
  230. 香川敬生・星山賢太郎・野口竜也, 2020, 2000年鳥取県西部地震による気象庁境港観測点における非線形地盤応答特性と境港市役所における観測記録の再現, 土木学会論文集A1, 76(4), p. I_163-I_171, doi:10.2208/jscejseee.76.4_I_163
  231. 風間卓仁・山本圭吾・大柳 諒・岡田和見・大島弘光・井口正人, 2020, 桜島火山における繰り返し相対重力測定(2019年5月~2020年3月), 京都大学防災研究所年報, 63B, 108-117 (link)
  232. 片桐昭彦, 2020, 災害記録としての『常光寺王代記并年代記』, 災害・復興と資料, 12, 8-19
  233. 金子 柊・茂木 透・服部克巳, 2020, マルチチャンネル特異スペクトル解析(MSSA)を用いたMTデータのノイズ除去法の開発, J. Atmospheric Electricity, 39(1), 37-41, doi:10.1541/jae.39.37
  234. 加納将行, 2020, データ同化に基づく断層すべりの理解・予測と波動場推定の高度化に向けた研究, 地震, 73, 69-91, doi:10.4294/zisin.2019-9
  235. 加納靖之, 2020,紀伊半島における土地傾斜ブロマイド記録のデジタルアーカイブ構築, 東京大学地震研究所技術研究報告, 26, 16-19(link)
  236. 加納靖之・杉森玲子・榎原雅治・佐竹健治, 2021, 歴史のなかの地震・噴火――過去がしめす未来, 東京大学出版会, 260p. (link)
  237. 亀 伸樹, 2020, 地震発生を重力でとらえる―P波到着前の地震シグナル検知―, 地震ジャーナル, 69, 55-58 (link)
  238. 亀谷伸子・石崎泰男・勝岡菜々子・吉本充宏・寺田暁彦, 草津白根火山, 白根火砕丘群南麓の白根南火口列と弓池マールの噴火様式と活動年代, 火山, 66(1), 1-19, doi:10.18940/kazan.66.1_1
  239. 川畑拓矢・上野玄太・中野慎也・藤井陽介・三好建正・小守信正・増田周平・眞木貴史・土居知将・野村俊一・雨宮 新・山崎 哲・露木 義, 2020, 第10回データ同化ワークショップの報告, 天気, 67(8), 27-30 (link)
  240. 川畑亮二・宗包浩志, 2021,MCMC法を用いた震源断層及びすべり分布モデル推定のためのプロトタイププログラムの開発, 国土地理院時報, 134 (link)
  241. 木口 努・今西和俊・松本則夫, 2020, 岐阜県東部の活断層周辺における地殻活動観測結果(2019年11月~2020年4月), 地震予知連絡会報, 104, 272-273 (link)
  242. 木口 努・今西和俊・松本則夫, 2021, 岐阜県東部の活断層周辺における地殻活動観測結果(2020年5月~2020年10月), 地震予知連絡会報, 105, 266-267 (link)
  243. 木口 努・桑原保人, 2021, 地下透水性亀裂の方向の支配要因:産総研地下水等総合観測井(愛知県・紀伊半島~四国)の16地点の孔井内測定データからの考察, 活断層・古地震研究報告, 20, 1-78 (link)
  244. 木口 努・松本則夫・北川有一・板場智史・落 唯史・佐藤 努・矢部 優, 2020, 東海・関東・伊豆地域における地下水等観測結果(2019年11月~2020年4月)(61), 地震予知連絡会会報, 104, 265-271 (link)
  245. 木口 努・松本則夫・北川有一・板場智史・落 唯史・佐藤 努・矢部 優, 2021, 東海・関東・伊豆地域における地下水等観測結果(2020年5月~2020年10月)(62), 地震予知連絡会会報, 105, 259-265 (link)
  246. 気象研究所, 2020a, 全国GNSS観測点のプレート沈み込み方向の位置変化, 地震予知連絡会会報, 104, 22-26 (link)
  247. 気象研究所, 2020b, 天竜船明レーザー式変位計による地殻変動観測, 地震予知連絡会会報, 104, 212-215 (link)
  248. 気象研究所, 2020c, 南海トラフ沿いの長期的スロースリップの客観検知, 地震予知連絡会会報, 104, 366-368 (link)
  249. 気象研究所, 2020d, 内陸部の地震空白域における地殻変動連続観測, 地震予知連絡会会報, 104, 369-372 (link)
  250. 気象研究所, 2020e, 中規模繰り返し相似地震の発生状況と発生確率(2020), 地震予知連絡会会報, 104, 448-452 (link)
  251. 北川有一・板場智史・松本則夫・落 唯史・木口努, 2020, 紀伊半島~四国の歪・傾斜・地下水観測結果(2019年11月~2020年4月), 地震予知連絡会会報, 104,373-383 (link)
  252. 北川有一・松本則夫・佐藤 努・板場智史・落 唯史・木口 努・矢部 優, 2020, 近畿地域の地下水位・歪観測結果(2019年11月~2020年4月), 地震予知連絡会会報, 104, 384-387 (link)
  253. 北川有一・板場智史・武田直人・松本則夫・落唯史・木口努・矢部優, 2021, 紀伊半島~四国の歪・傾斜・地下水観測結果(2020年5月~2030年10月), 地震予知連絡会会報, 105, 382-392 (link)
  254. 熊澤貴雄・尾形良彦, 2020, 群発地震活動の非定常ETASモデルによる検出と測地学データに基づく予測可能性について, 地震予知連絡会会報, 103(12-12), 378-384 (link)
  255. 小島春奈・吉野千恵・根本和秀・服部克巳・小西敏春・古屋隆一, 2020, 千葉県旭観測点における地中ラドン濃度のマルチチャンネル特異スペクトル解析:地中ラドンフラックス変動の推定と地震活動との関係の序報, J. Atmospheric Electricity, 39, 46-51, doi:10.1541/jae.39.46
  256. 牛腸正則, 児島正一郎, 山田寛喜, ESPRIT-TomoSARを用いたマルチベースライン航空機SARデータの三次元イメージング, 電子情報通信学会和文論文誌, J103-B, 8, 321-331, doi:10.14923/transcomj.2019WFP0013
  257. 小林昭夫, 2021, GNSSによる長期的スロースリップ客観検出手法の応用-短期的スロースリップの検出と長期的スロースリップの規模推定-, 気象研究所研究報告, 69, 1-14, doi:10.2467/mripapers.69.1
  258. 齋藤瑞穂, 2020, 特論1714年信濃小谷地震と姫川の天然ダム, 前近代歴史地震史料研究会(編)「歴史学による前近代歴史地震史料集2―近世以前地震家屋倒壊率・死亡者数基礎史料―」,新潟大学人文学部, 109-118 (link)
  259. 齋藤瑞穂, 2020, 縄文三陸地震津波への接近, 考古学ジャーナル, 738, 50-53
  260. 塩原 肇・杉岡裕子・太田豊宣・大西信人, 2020, -自律型新方式海底地震計の開発試験に向けた深海用-小型ビデオカメラの開発, 東京大学地震研究所技術研究報告, 26, 1-9 (link)
  261. 宍倉正展・越後智雄・行谷佑一, 2020, 能登半島北部沿岸の低位段丘および離水生物遺骸群集の高度分布からみた海域活断層の活動性, 活断層研究, 53, 33-49
  262. 宍倉正展・行谷佑一・前杢英明・越後智雄, 2020, 1872年浜田地震による石見畳ヶ浦の隆起-離水生物遺骸群集と地形データによる検証-, 地震2, 73, 159-177, doi:10.4294/zisin.2020-4
  263. 志藤あずさ・光岡郁穂・松本 聡・松島 健・相澤広記・清水 洋・内田和也・神薗めぐみ・手操佳子・中元真美・宮町凛太郎・一柳昌義・大園真子・岡田和見・勝俣 啓・高田真秀・高橋浩晃・谷岡勇市郎・山口照寛・小菅正裕・東 龍介・内田直希・江本賢太郎・太田雄策・岡田知己・海田俊輝・小園誠史・鈴木秀市・高木涼太・出町知嗣・中原 恒・中山貴史・平原 聡・松澤 暢・三浦 哲・山本 希・今西和俊・内出崇彦・吉見雅行・青井 真・浅野陽一・上野友岳・藤田英輔・阿部英二・飯高 隆・岩崎貴哉・加藤愛太郎・蔵下英司・酒井慎一・椎名高裕・芹澤正人・田中伸一・中川茂樹・平田 直・増田正孝・宮川幸治・八木健夫・渡邉篤志・後藤和彦・伊藤武男・奥田 隆・寺川寿子・堀川信一郎・前田裕太・松廣健二郎・山中佳子・渡辺俊樹・飯尾能久・片尾 浩・加納靖之・津田寛大・三浦 勉・村本智也・山下裕亮・大久保慎人・山品匡史・大倉敬宏・中尾 茂・平野舟一郎・宮町宏樹・八木原寛, 2020, 2016年熊本地震合同地震観測データ -地震学的解析の基礎的資料として-, 地震2, 73, 149-157, doi:10.4294/zisin.2019-11
  264. 新堀敏基・石井憲介,2021,気象庁移流拡散モデル設計書,気象研究所技術報告,84, doi:10.11483/mritechrepo.84
  265. 高橋直也・内田嗣人・池田倫治・遠田晋次, 2020, 2019年カリフォルニア州リッジクレスト地震の概要と最近の地震断層調査の動向, 活断層研究, 53, 51-65
  266. 高橋浩晃, 2020, 北海道胆振東部地震などの地表に痕跡を残さない地震の特徴, 地震予知連絡会会報, 104, 467-469 (link)
  267. 高橋 誠, 2020, 海から遠いまち―伊勢湾台風被災地における土地利用変化と災害暴露性, 東海社会学会年報, 12, 32-45
  268. 高橋 良・伊藤久敏, 2020, 岩石学的特徴とU-Pb年代に基づく函館市街地下の軽石堆積物の給源の検討, 火山, 65, 69-82, doi:10.18940/kazan.65.3_69
  269. 田上綾香, 2020, 日本海東縁地域の応力場と発生した地震の断層面との関係, 東北大学修士論文
  270. 千田 優, 福井信気, 森 信人, 安田誠宏, 山本剛士, 2020, 漂流物と流れ場の時空間計測データを用いた複雑流れ場における津波漂流物挙動の解析, 土木学会論文集B2(海岸工学), 76 (2), I_313-I_318, doi:10.2208/kaigan.76.2_I_313
  271. 土井一生・釜井俊孝・東 良慶・王 功輝,2021,平成30年大阪府北部の地震における高槻市内および枚方市内の斜面災害調査,らんどすらいど,36,23-32 (link)
  272. 長尾年恭・鴨川 仁, 2020, 地震・火山噴火予知研究と電磁気観測, 日本磁気学会『まぐね』, 15(5), 264-271
  273. 中川茂樹・加藤愛太郎, 2020, WINフォーマットデータをObsPyで読み込む新しいモジュール, 東京大学地震研究所技術研究報告, 26, 31-36 (link)
  274. 中川弘之・宮原伐折羅・宗包浩志, 2020, 精密単独測位(PPP-AR)を用いたGNSS定常解析システムの開発, 国土地理院時報, 133, 77-86 (link)
  275. 中道治久・山本圭吾・山田大志・為栗 健・高橋幸祐・青山 裕・山本 希・野上健治・及川 純・前田裕太・大倉敬宏・松島 健・八木原寛・菅原道智・塚本果織・岸本博志・工藤直樹・山村卓也・平原 聡・八木健夫・堀川信一郎・吉川 慎・園田忠臣・仲谷幸浩・平野舟一郎・宮町宏樹・田中佑樹・吉田英臣・西川空良・甲斐 建・高橋龍平・田ノ上和志・川辺智士・若林 環・村松 弾・橋本 匡・大須賀啓士, 2020, 2019年桜島火山人工地震探査の概要と過去の探査との比較, 京都大学防災研究所年報, 63B, 100-107 (link)
  276. 中村 元, 2020, 1961年長岡地震に関する歴史資料と災害状況, 災害・復興と資料, 12, 7-27
  277. 野村俊一・尾形良彦, 2020, 多様な予測方式に対する前震識別モデルとその予測性能評価, 地震予知連絡会会報, 103 (12-8), 361-366(link)
  278. 秦 康範, 2020, 訪日外国人への災害情報提供の現状と課題, IATSS Review(国際交通安全学会誌), 45(1), 28-35, doi:10.24572/iatssreview.45.1_28
  279. 服部健太郎・中西一郎・大邑潤三, 2020, 日記の筆者が地震動を感じた地点の時間変化:近江八幡「市田家日記」の場合, 地震2, 73, 65-68, doi:10.4294/zisin.2019-10
  280. 原田和彦, 2020, 一八四七年善光寺地震における善光寺町の被害, 災害・復興と資料, 12, 64-72
  281. 平野舟一郎・八木原寛・仲谷幸浩・後藤和彦, 2020, 2017 年の臨時地震観測による鹿児島湾・喜入沖の震源分布と発震機構―鹿児島地溝形成に伴う断層に沿った顕著な地震活動―, 鹿児島大学理学部紀要, 53, 32-44 (link)
  282. 廣瀬仁・卯川知希, 2020, 地震数データから応力変化量を推定する手法の試行, 神戸大学都市安全研究センター研究報告, 24, 10-17 (link)
  283. 深畑幸俊・大橋聖和・高田陽一郎・田中明子, 2020, 特集号「地殻ダイナミクス(Part II)─地質学と地球物理学の融合に向けて─」巻頭言, 地学雑誌, 129(4), 447-450, doi:10.5026/jgeography.129.447
  284. 福井信気, 森 信人, Che-Wei Chang, 千田 優, 安田誠宏, 山本剛士, 2020, 市街地模型を用いた津波・高潮浸水実験と解析, 土木学会論文集B2(海岸工学), 76 (2), I_373-I_378, doi:10.2208/kaigan.76.2_I_373
  285. 堀 健彦, 2020, 『震潮記』所載「宍喰浦荒図面」の基礎的考察―1854年南海地震津波被害を考えるために―, 災害・復興と資料, 12, 38-48
  286. 前田憲二・弘瀬冬樹・溜渕功史, 2020, 群発的地震活動を前震活動と仮定して行う本震の発生予測手法(5):最近の活動事例による検証とETASモデルとの比較, 地震予知連絡会会報, 103, 356-360 (link)
  287. 前野深・吉本充宏,2020,西之島噴火による地形・地質・噴出物の特徴とその変化, 小笠原研究,46, 37-51 (link)
  288. 松野弥愛, 2020, 2016年ニュージーランド・カイコウラ地震震源域における応力場の時空間変化, 東北大学修士論文
  289. 宮岡一樹・小林昭夫, 2020, 南海トラフ地域のスロー地震(2)気象庁・気象研究所による観測, 地震予知連絡会50年のあゆみ, 148-150 (link)
  290. 宮下卓也, GOMEZ-RAMOS Octavio, 森 信人, 2020, 適合格子細分化法を用いた南海トラフ沿いの巨大地震津波の数値計算, 土木学会論文集B2(海岸工学), 76(2), I_289-I_294, doi:10.2208/kaigan.76.2_I_289
  291. 村田泰輔, 2020a, 5 地震痕跡, 桑田訓也ほか「平城宮第一次大極殿院東方の調査-第612次」, 奈良文化財研究所紀要2020, 140-143
  292. 村田泰輔, 2020b, 災害痕跡データベースの構築-災害の軽減に向けた考古学の新たな挑戦-, 佐藤禎一(編)「學士會会報」,一般社団法人学士会, 942, 57-70
  293. 村田泰輔・大澤正吾, 2020, 藤原宮下層運河SD1901Aの検討-第198次, 奈良文化財研究所紀要2020, 92-102
  294. 村田泰輔, 2021, 論説 災害痕跡データベースの構築・公開に向けて~考古学の新たな挑戦, 西藤公司(編)「地域防災」, 一般財団法人日本防火・防災協会, 36, 4-9 (link)
  295. 室井研二, 2020, 臨海工業都市の災害―伊勢湾台風後のコミュニティと災害脆弱性, 東海社会学会年報, 12, 15-31
  296. 安本真也・河井大介・齋藤さやか・関谷直也, 2021, パネル調査に基づくドラマ「パラレル東京」の効果-首都直下地震への対策-, 東京大学大学院情報学環紀要情報学研究, 37, 73-150 (link)
  297. 矢田俊文, 2020, 俳人岡西惟中と一七〇七年宝永地震における大坂の被害数, 災害・復興と資料, 12, 1-7
  298. 矢部 優・落 唯史・板場智史・松本則夫・北川有一・木口 努・木村尚紀・木村武志・松澤孝紀・汐見勝彦, 2021, 東海・紀伊半島・四国における短期的スロースリップイベント(2020年5月~2020年10月), 地震予知連絡会会報, 105, 214-258 (link)
  299. 山村紀香・加納靖之, 2020, 1586年天正地震の震源断層推定の試み─液状化履歴地点における液状化可能性の検討から─, 地震2, 73, 97-110, doi:10.4294/zisin.2019-7
  300. 山元孝広・中野 俊・石塚吉浩・高田 亮, 2020, 新期富士火山降下火砕物の再記載と噴出量の見積もり, 地質調査研究報告, 71, 517-580, doi:10.9795/bullgsj.71.517
  301. 矢守克也・飯尾能久・城下英行, 2021, 地震学のオープンサイエンス―地震観測所のサイエンスミュージアム・プロジェクトをめぐって, 実験社会心理学研究, 60(2), 82-99, doi:10.2130/jjesp.2009
  302. 行竹洋平, 2020, 箱根火山の深部低周波地震, 地震ジャーナル, 69, 31-41 (link)
  303. 吉田圭佑・松澤 暢, 2020, 近年の地震観測により得られた東北日本の応力場の不均質性と断層強度および地震発生機構の関係, 地学雑誌,129(4), 451-471, doi:10.5026/jgeography.129.451

研究成果共有システムデータベースのページに戻る
地震・火山噴火予知研究協議会のページに戻る